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Abstract

Subtle flaws in integer computations are a prime source for
exploitable vulnerabilities in system code. Unfortunately,
even code shown to be secure on one platform can be vul-
nerable on another, making the migration of code a notable
security challenge. In this paper, we provide the first study
on how code that works as expected on 32-bit platforms can
become vulnerable on 64-bit platforms. To this end, we sys-
tematically review the effects of data model changes between
platforms. We find that the larger width of integer types
and the increased amount of addressable memory introduce
previously non-existent vulnerabilities that often lie dormant
in program code. We empirically evaluate the prevalence
of these flaws on the source code of Debian stable (“Jessie”)
and 200 popular open-source projects hosted on GitHub.
Moreover, we discuss 64-bit migration vulnerabilities that
have been discovered as part of our study, including vulnera-
bilities in Chromium, the Boost C++ Libraries, libarchive,
the Linux Kernel, and zlib.
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1. INTRODUCTION

64-bit CPU architectures have become the main platform
for server and desktop systems. While 64-bit computing has
been used in research systems for almost four decades, it
took until 2003 for the underlying architectures to reach the
mass market. Since then, all major operating systems have
been ported to support 64-bit architectures, including Linux,
Windows and OS X. Software running on these systems
benefits from a huge address space that enables operating
with Gigabytes of memory and provides the basis for memory-
demanding computations.

The migration of software from one to another platform
may seem like a straight-forward task and, after over 10
years, one might expect that technical obstacles introduced
by 64-bit data models have long been resolved. However,
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

CCS’16, October 24 - 28, 2016, Vienna, Austria

(© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4139-4/16/10. .. $15.00

DOL: http://dx.doi.org/10.1145/2976749.2978403

this migration is far more involved than it seems, as it in-
duces several subtle differences in the resulting code. For
example, the LP64 data model seemingly affects a few in-
teger types only, yet these changes unleash an avalanche
of new type aliases (typedef) and signedness issues, which
developers and even security experts are not aware of. As a
result, 64-bit issues are rather the rule than the exception in
migrated code and there exist several examples of vulnerabil-
ities solely induced by migration, such as CVE-2005-1513 in
qmail, CVE-2007-1884 in PHP, CVE-2013-0211 in libarchive
and CVE-2014-9495 in libpng.

In this paper, we provide the first systematic study of these
64-bit migration vulnerabilities. To this end, we analyze com-
mon 64-bit data models for C/C++ and identify insecure
programming patterns, when porting code from 32-bit archi-
tectures. We determine two interdependent sources for such
vulnerabilities: (a) the changed integer widths and (b) the
very large address space that allows to allocate massive
amounts of memory. For each of these sources, we analyze
the underlying root causes and pinpoint necessary condi-
tions for their occurrence, thereby providing insights into
migration vulnerabilities as well as a reference for developers.
Although there exists a large body of work on integer-based
flaws [e.g., 2, 6, 9, 24, 30, 34, 42, 43, 45], to the best of our
knowledge, this is the first study that investigates vulnera-
bilities induced only by 64-bit migration.

To assess the presence of migration flaws in practice, we
conduct an empirical analysis and search for 64-bit issues
in the source code of 200 GitHub projects and all packages
from Debian stable (“Jessie”) marked as Required, Important
or Standard. We find that integer truncations and signedness
issues induced by 64-bit migration are abundant in both
datasets. For example, the unsigned type size_t alone, which
has a width of 64 bit under LP64, is truncated to 32-bit types
in 78% of all Debian packages. Although the vast majority
of these issues are not necessarily vulnerabilities, the sheer
amount indicates that developers are unaware of the subtle
changes resulting from migrating code to LP64.

Finally, we exemplify the security risk of 64-bit migration
by presenting case studies on vulnerabilities that have been
discovered as part of our study. For each of the identified
classes of 64-bit issues, we present a corresponding vulnera-
bility in a high-quality software project, including Google’s
Chromium, the GNU C' Library, the Linuzr Kernel and the
Boost C++ Libraries. Our analysis reveals that migration
vulnerabilities are a widespread problem that is technically
difficult to solve and requires significant attention during
software development and auditing.



Let us, as one example of a real vulnerability, consider the
following simplified excerpt of a flaw discovered during our
study in zlib version 1.2.8 (see Section 5 for more details):

1 int len = attacker_controlled();
2 char *buffer = malloc((unsigned) len);
3 memcpy (buffer, src, len);

This code is perfectly secure on all 32-bit platforms, as
the variable len is implicitly cast to size_t in line 2 and 3
when passed to malloc and memcpy. However, if the code is
compiled using the LP64 data model, line 2 and 3 produce
different results, where a 64-bit sign extension is performed
in line 3. An attacker controlling the variable len can thus
overflow the buffer by providing a negative number. For
instance, —1 is converted to 0x00000000ffff£f£fff in line 2 and
OxfffffffffFFFFFEF in line 3, resulting in a buffer overflow.

In summary we make the following contributions:

e 64-bit migration vulnerabilities. We systemati-
cally study and define vulnerabilities induced by mi-
grating C/C++ program code to 64-bit data models.

e Empirical study. We present an extensive study that
highlights the prevalence of 64-bit issues in mature,
well-tested software such as Debian stable.

e Practical case-studies. We discuss 64-bit vulnera-
bilities, discovered by us based on this systemization, in
high-quality software for all presented classes of flaws.

The rest of this paper is organized as follows: We review
integer-related issues in Section 2 and systematically define
64-bit migration vulnerabilities in Section 3. An empirical
study and case studies on these vulnerabilities are then pre-
sented in Section 4 and Section 5, respectively. We discuss
countermeasures in Section 6 and related work in Section 7.
Section 8 concludes the paper.

2. SECURITY OF INTEGER TYPES

Many software vulnerabilities are rooted in subtleties of
correctly processing integers, in particular, if these integers
determine the size of memory buffers or locations in mem-
ory. Leveraging these flaws, an attacker can trigger buffer
overflows, write to selected memory locations or even exe-
cute arbitrary code. In this section we provide background
information on the security of integers in C/C++ and focus
on the effect the data model has on the existence of vul-
nerabilities. We begin by providing information on integers
(Section 2.1), and continue to discuss the most prominent
data models implementing them. Finally, we describe the
resulting common classes of integer-related vulnerabilities
(Section 2.3).

2.1 Integer Types in C

Conversions between integer types provide the basis for
integer-related vulnerabilities, in particular, for those that
result when porting code to 64-bit architectures. The C stan-
dard defines five base types for these integers, namely, char,
short, int, long, and long long [18, Sec. 6.2.5].

Each of these integer types exists in two variants: an un-
signed type to store positive numbers and a corresponding
signed type that can also hold negative numbers. Moreover,
each type is associated with a unique natural number known

as its conversion rank. While the C standard does not explic-
itly define these ranks, it specifies an ordering among them.
Consequently, we define the following platform-independent
properties for each integer type T

e Signedness. We denote the signedness of an integer
type T by S(T) € {0, 1}, where S(T") = 0 corresponds
to unsigned and S(T") =1 to signed types.

e Conversion rank. We denote the rank of an integer
type T by R(T) € N, where R(char) < R(short) <
R(int) < R(long) < R(long long).

The conversion rank orders integers by size, but does not
specify the exact number of bits occupied by the different
types. This gap is filled by the platform-dependent data
model, which associates each type T with a concrete width
W(T) € {1,2,4,8}. Just like the rank, the width of the
signed and unsigned versions of a basic data type are required
to be equal. In combination with the integer’s signedness,
the width of an integer specifies the range I of numbers that
it can represent:

[(T) = {[072””“ —1] if S(T) = 0

[_28.W(T)—1’28'W(T)_1 —1] otherwise

Identifying sources of vulnerabilities as code is ported to
a 64-bit data model ultimately requires the integer width
to be taken into account. However, it should be noted that
the width of a data type with lower rank must always be
lower or equal to that of types with higher rank. That
is, for any two types 71 and T> with R(7T1) < R(7T1) holds
W (T1) < W(T2). This observation is of great value for
systematically identifying problems when code is ported to
64-bit platforms (Section 3).

2.2 Data Models

A data model defines the width of integer types for a
specific platform. Table 1 provides an overview of common
data models used in the present and past [40], exemplary
operating systems using them, as well as the number of bytes
assigned to each type. For all models, the width of pointers
and the size_t type correspond to the architectures’ register
size, e.g., IP16 and LLP64 specify the size of pointers as
2 byte and 8 byte, respectively.

The motivation behind the different definitions of basic
integer types lies in preserving their relations as good as
possible when migrating code between data models. Due
to our focus on the transition from 32 bit to 64-bit, ILP32
serves as a reference point in this paper, as it is used on
most 32-bit architectures. That is, we assume that a given
program works as intended for ILP32 and focus on differences
when compiling the same program using a 64-bit data model.

If we compare ILP32 to LLP64 and LP64, as used by
64-bit Windows and most 64-bit Unix systems, respectively,
we see that the type int is 32-bit wide for all three data
models. While for ILP32 this means that int and pointers
have the same width, on the 64-bit data models int is only
half as wide as the pointer type. The same holds true for
the type long on LLP64. As a consequence, on both 64-bit
data models an int variable can no longer be used to address
the full range of memory. While there also exist other 64-bit
data models, such as ILP64 and SILP64, these are only used
on few platforms and, moreover, use the same width for
int, long and pointers, which renders migrating code less
problematic.



data model IP16 IP16L32 LP32 ILP32 LLP64 LP64 1ILP64 SILP64
data type (PDP-11 Unix) (Winl6) (Win32, Linux) (Win64) (Linux) (HAL) (UNICOS)
pointer/size_t 2 2 4 4 8 8 8 8
short - 2 2 2 2 2 2 8
int 2 2 4 4 4 8 8
long 4 4 4 4 8 8 8
long long - - 8 8 8 8 8 8

Table 1: Widths of basic integer types in bytes for different data models and operating systems [21, 27].

2.3 Integer-Related Vulnerabilities

Several vulnerabilities are rooted in subtle flaws as inte-
gers are processed to calculate the size of buffers, offsets
in memory, or amounts of memory to copy from one lo-
cation to another [see 9, 20]. Three common sources for
these integer-related vulnerabilities exist: truncations, under-
flows/overflows, and signedness issues [6]. In the following,
we illustrate each of these flaws by example where we assume
an ILP32, LP64, or LLP64 data model. Moreover, we provide
working definitions for each type of flaw, which we make use
of in the rest of the paper.

2.3.1 Integer Truncations

For an arbitrary assignment z = e, where x is a variable
of type (z), and e is an expression of type (e), a truncation
occurs when W ((x)) < W ((e})), that is, the width of the
target variable x is smaller than that of the expression e it
is asked to store. Neither rank nor signedness of the integers
tell us whether a truncation occurs. Instead, the existence
of truncations is entirely dependent on the width of integers,
and therefore, on the data model. However, we know that the
width of (z) can only be smaller than that of (e), if the rank
R((x)) is smaller than the rank R((e)) and therefore, we can
focus on these cases when examining possible truncations. It
is important to note that £ may be an implicit variable not
directly visible in the code, for instance, when e is directly
assigned to a function parameter or used in a condition.

unsigned int x = attacker_controlled();
unsigned short y = x;

char *buffer = malloc(y);

memcpy (buffer, src, x);
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Figure 1: Integer truncation — buffer overflow.

Figure 1 shows an example of an integer truncation that
leads to a buffer overflow. An attacker-controlled value
is read and stored in the integer x of type unsigned int
(line 1). Subsequently, x is assigned to the variable y of type
unsigned short (line 2). Finally, a buffer of size y is allocated
(line 3), and x bytes are copied into this buffer (line 4). The
problem with this code is that for all three data models,
integers of type int are wider than integers of type short,
and therefore, the value of x is truncated before it is assigned
to y by discarding leading bits until the width of y is met. In
effect, if the attacker chooses a sufficiently large integer, e.g.,
x = Oxffffffff, the amount of data copied into the buffer is
larger than its allocated size 0x0000ff£f.

2.3.2 Integer Overflows

For an arbitrary expression e; o ez, an integer overflow
or underflow occurs if the result obtained by evaluating the

expression e oez does not fall into the range I({e1 o e2)). The
existence of overflows therefore depends on the arithmetic
operation o as well as all the results obtained by evaluating
the sub-expressions e; and es.

1 unsigned int x = attacker_controlled();
char *buffer = malloc(x + CONST);
3 memcpy (buffer, src, x);

Figure 2: Integer overflow — buffer overflow.

Figure 2 illustrates a buffer overflow that is triggered by
an integer overflow. Similar to the previous example, the
attacker controls a variable named x, which is of type un-
signed int. A buffer of size x plus a constant is subsequently
allocated, and x bytes are copied into the buffer. Unfortu-
nately, the value obtained by adding a constant to x may
be outside the range of the type unsigned int, for instance,
oxffffffff + 0x100. In effect, the addition wraps around,
resulting in a buffer size smaller than x, 0x000000£f. A sub-
sequent copy operation then writes oxfffff£f£ff bytes into the
too small buffer.

2.3.3 Integer Signedness Issues

Finally, for an arbitrary assignment x = e, a change in
signedness only occurs when S((z)) # S({e})), that is, the
signedness of the variable x and the expression e are different
and W((z)) > W((e)). A change in signedness primarily
depends on the signedness of the variables in e, but also on
whether or not a signed target variable x is able to store all
possible values of the unsigned version of the expression e.
If the target type is narrower than that of the expression,
we are dealing with a truncation. In case S({(e)) = 1 and
W ((z)) > W ((e)) additionally a sign-extension occurs, that
is, the most significant bit of the narrower type is propagated
to fill the larger width of the target variable.

1 short x = attacker_controlled();
char *buffer = malloc((unsigned short) x);
3 memcpy (buffer, src, x);

Figure 3: Sign-extension — buffer overflow.

Figure 3 reconsiders the example given in the introduction,
illustrating a buffer overflow that is caused by a change of
signedness and a sign-extension due to upcasting to a larger
unsigned type (unsigned short to size_t). The example is
however modified to work on all three considered platforms.
An attacker controlling the variable x of type short can
overflow the buffer by providing a negative number, for
instance -1, which is converted to 0x0000£££f in line 2 and
due to a sign extension to Oxffffffff in line 3.



source type int unsigned int long  unsigned long ssize_t size_t/pointer long long

dest type 4 4 (— 8) 4 - 8 8

int 00O coe [ J oX X J ( X J 000
unsigned int 00O [ ] [ X J (X X/
long (OXO)@) ©) (OXOXC) CeO [ X G
unsigned long B 00O [ ( X J
ssize_t 00O O)@) 00O O 00O [ JOXO)
size_t/pointer B B 00O B 00O 00O [

long long 00O 00O 00O OO 00O @) 00O

Table 2: Assignments using basic types on ILP32 (left circle), LLP64 (middle circle) and LP64 (right circle):

O denotes no problem,

In addition to this common type of vulnerabilities, we con-
sider another integer flaw that has received little attention so
far: For a comparison e; ~ ez of the two expressions e; and
ez of type (e1) and (e2), an integer signedness issue occurs
when the comparison is signed where it should be unsigned
and an integer from the comparison is converted to an un-
signed type after evaluating the expressions, or vice versa.
Signedness issues of this kind depend on all properties of the
compared types (e1) and (e2), that is, sign, rank, and width.

int x = attacker_controlled();
unsigned short BUF_SIZE = 10;
if (x >= BUF_SIZE)

return;
memcpy (buffer, src, x);

B oW N =

o

Figure 4: Signed comparison — buffer overflow.

Figure 4 shows an example of an integer signedness issue
when comparing variables of different signedness resulting in
a buffer overflow. In this example, the attacker-controlled
variable x is of type int, and it is compared to a buffer size
stored in a variable of type unsigned short to avoid buffer
overflows. x bytes are subsequently copied into the buffer.
Unfortunately, the comparison is signed, and therefore, if
an attacker chooses a negative number for x, the check is
by-passed, and the negative number is converted into the
unsigned type size_t as it is passed to memcpy as a third
argument.

3. 64-BIT MIGRATION VULNERABILITIES

Integer-related flaws have been studied in great detail in
the past and several methods for analysis, detection and
mitigation have been proposed [e.g., 6, 9, 30, 42, 45]. All of
these approaches, however, consider defects directly created
by the developer, such as incorrect type casts. By contrast,
we focus on flaws that are introduced by migrating code to
a 64-bit data model and are non-existent on the originating
data model. These defects are introduced indirectly and are
hard to spot by the developer without anticipating a later
migration.

In the following, we characterize different vulnerabilities
that emerge when compiling code for a 64-bit data model
that securely runs on 32-bit platforms. These vulnerabilities
can be categorized by two generic sources of defects: changes
in the width of integers (Section 3.1) and the larger address
space available on 64-bit systems (Section 3.2). For a specific
data model M, we denote the width of an integer type T' by
W (T) and the range by In(T).

a change in signedness, possibly with sign extension (E) and @ marks a truncation.

3.1 Effects of Integer Width Changes

All types of integers available on 32-bit platforms also exist
in 64-bit data models, however, their width may differ (see
Section 2.2). These changes introduce previously non-existent
truncations and sign extensions in assignments. Surprisingly,
the migration to 64 bit may even flip the signedness of
comparisons and render checks for buffer overflows ineffective.
In the following, we discuss each of these problems in detail.

3.1.1 New Truncations

As discussed in Section 2.3, a truncation occurs when an
expression is assigned to a type narrower than that of the ex-
pression itself. Table 2 provides an overview of integer issues
caused by assignments, broken down by basic integer types.
For each of the three prevalent data models, truncations are
marked by a filled circle (@). Particularly noteworthy are
those assignments that behave differently between ILP32
and LLP64 or LP64, such as conversions from size_t to un-
signed int or long to int. In these cases, new truncations
occur that are specific to the migration process from 32-bit
to 64-bit data models.

In addition to these simple truncation, the migration of
the data model additionally introduces two vulnerability
patterns related to the handling of pointers.

Incorrect pointer differences. The length of a memory region
can be determined by subtracting pointers, returning an inte-
ger of type ptrdiff_t, which has the same width as a pointer.
Unfortunately, it is common practice to store such differences
in a variable of type int. This is unproblematic on all 32-bit
platforms, since WiLps2(int) = WiLps2(ptrdiff_t), but fatal
on LP64 and LLP64, where Wi (int) < Wi (ptrdiff_t) for
M € {LP64,LLP64}, which means that the difference is
truncated to 32 bit and thus may cause loss of information.

Figure 5 shows an exemplary vulnerability of this type.
Compiling the code produces no warnings, yet on 64-bit plat-
forms, line 5 introduces an integer truncation. The example
shows a typical pattern for processing an input string str
line-by-line and determining a line’s length by the difference
of end and start pointers. If one input line exceeds 4 Gigabyte
in length, the variable len only stores the truncated length
as it is only 32 bit. For instance, if MAX_LINE_SIZE = 100 and
eol - str = 0x1000000ff, len is truncated to 0x000000ff and
finally triggers a buffer overflow in line 8.

Unfortunately, vulnerabilities of this type are supported by
the design of standard library functions, such as fgets, fseek
and snprintf, which receive or return size information as
type int and long. The common idiom of using variables of
type int to iterate over buffers further adds to this problem
(see Section 3.2.1).



right operand int unsigned int  long  unsigned long ssize_t size_t/pointer long long

left operand 4 4(— 8) 4 — 8 8

int 000 000 000 (XX J 000 (X X J 000
unsigned int 000 000 [ X J© (X X J [ JOX@) ( X X J 00O
long 000 ( X J©) 000 (XX J 00O (XX J 000
unsigned long 000 000 000 (X X J (XX J (XX J ocoe
ssize_t 00O [ JOX©, 00O ( X X J 00O (X X J 00O
size_t/pointer 000 000 000 (XX J 000 (XX J cee®
long long 00O 00O 00O coe 00O cee 00O

Table 3: Comparisons using basic integer types on ILP32 (left circle), LLP64 (middle circle) and

LP64 (right circle): O denotes a signed and ® an unsigned comparison.

char buf [MAX_LINE_SIZE];
char *eol = strchr(str, ’\n’);
*eol = ’\07;

oW N o=

unsigned int len = eol - str;

if (len >= MAX_LINE_SIZE)
return -1;

strcpy (buf, str);

© N o

Figure 5: Example of a 64-bit migration vulnerabil-
ity caused by incorrect pointer differences.

Casting pointers to integers. Closely related are casts from
pointers to integers. While this programming pattern is
generally discouraged, casting pointers to int is unproblem-
atic on all 32-bit platforms, as pointers and integers have
the same size, that is WiLps2(int) = Wirps2(pointer). In
contrast, on LP64 and LLP64 this practice leads to latent
pointer truncations [see 29] as Wi (int) < Wiy (pointer) for
M € {LP64,LLP64}. These truncations are latent in the
sense that they go unnoticed as long as the pointers refer
to locations within the first 4 Gigabyte of the address space.
For these pointers, a truncation does not change their value
as only preceding zeros are removed. Attackers, however,
may purposely increase the amount of memory allocated by
the program to ensure that pointers outside this safe range
are created. Still, these vulnerabilities are rather rare and a
successful exploitation is rendered difficult by address space
layout randomization (ASLR) [5].

3.1.2 New Signedness Issues

Two types of integer signedness issues arise as code is
ported from 32-bit to 64-bit platforms. First, sign extensions
may occur as signed integers are converted to unsigned types
that have become wider than their ILP32 equivalents. Second,
the signedness of comparisons potentially changes, rendering
checks to protect from buffer overflows ineffective.

Sign extensions. When converting from one signed type to
another wider signed type, a sign extension is performed
for value preservation. Converting a signed type to a wider
unsigned type follows the same principle, but the resulting
value is eventually interpreted as unsigned integer. In effect,
negative numbers are converted into large positive numbers,
a possible source for vulnerabilities. The latter case can be
formalized as follows: Let M7 be a 64-bit data model and
M> be the 32-bit reference data model. For the assignment
T = e, sign extensions with successive unsigned interpretation
is performed in M1, but not in M if 0 = S((z)) # S({e)) =1
and Wi, ((z)) > W, ((€)) = War, ((z)) = War, ((€))-

Table 2 indicates signedness errors in assignments as gray
circles (©), where sign extensions are additionally marked (®).
For the LLP64 data model, new sign extensions occur for
conversions from int and long to size_t and for LP64 from
int to unsigned long and size_t.

From a security perspective, conversions to the size_t type
appear to be especially fruitful when looking for vulnerabili-
ties. The example of the zlib vulnerability presented in the
introduction illustrates this issue in a real-world scenario (see
Section 5 for further details).

Signedness of comparisons. Checks to ensure that a buffer
does not overflow are only effective if they correctly account
for the signedness of the integers involved. Typically, this
means that all integers should be converted to unsigned types
prior to comparison. In many cases, explicit conversions can
be omitted on 32-bit systems as integer conversion rules
ensure that the comparisons will be performed unsigned.
This, however, is not guaranteed on 64-bit platforms anymore,
bringing forth comparisons that change their signedness when
being ported. Those cases can be formally summarized as
follows: Let M; be a 64-bit data model and Ms> be the
32-bit reference data model. Then, a comparison a ~ b,
where (without loss of generality) 0 = S({a)) # S((b)) =1
is unsigned in My, but signed in M if R((b)) > R({a)) and
max I, ({a)) & In, ({b)) and max In, ({a)) € I ({b)), that
is signed type (b) can not hold the maximum value of the
unsigned type (a).

Table 3 provides an overview of the signedness of com-
parisons for basic integer types and different data models.
Unsigned comparisons are marked as filled circles (@) while
signed comparisons are indicated by empty circles (O). Of
particular interest are those cases where the indicators change
between 32-bit and 64-bit data models. For instance, a com-
parison involving long and unsigned int is unsigned on both,
ILP32 and LLP64, but signed on the LP64 data model.

Figure 6 presents a corresponding vulnerability. An attacker-
controlled value is first stored in a long integer named len on
line 2, and then checked to ensure it does not exceed the buffer
size BUF_SIZE on line 4. Finally, len bytes are copied into
the buffer. As in the previous example, compiling this code
produces no warnings. Moreover, the comparison between
len and BUF_SIZE is unsigned on 32-bit data models. This is
the case because long and unsigned int have the same width
and therefore long cannot hold the full range of unsigned int.
Consequently, len gets reinterpreted as unsigned value to con-
duct the comparison. For instance, given len = -1 the com-
parison is performed unsigned as Oxffffffff > 0x00000080.
Although a reinterpretation of the value occurs, the result
still matches the developer’s expectations.



const unsigned int BUF_SIZE = 128;
long len = attacker_controlled();

if (len > BUF_SIZE)
return;
memcpy (buffer, src, len);

[ N

Figure 6: A check to avoid buffer overflows on 32-bit
systems that is ineffective on LP64 platforms.

In contrast, on LP64 the type long is 8 bytes wide, while
an unsigned int is only 4 bytes wide. Therefore, a variable of
type long can hold the full range of an unsigned int, and a
signed comparison is performed. This is problematic, as the
check in line 4 can be bypassed by supplying a negative value,
for instance -1, for 1len. When copying data on line 6, this
value is sign-extended and interpreted as unsigned integer,
OxffffffffffFFFFFE, resulting in a buffer overflow.

3.2 Effects of a Larger Address Space

In addition to flaws that result from changes in integer
widths, code running on 64-bit platforms has to be able
to deal with larger amounts of memory as the size of the
address space has increased from 4 Gigabytes to several
hundreds of Terabytes. In effect, the developer can no longer
assume that buffers larger than 4 Gigabytes cannot exist
in memory. As a result, additional integer truncations and
overflows emerge, which do exist on 32-bit data model in
the first place, but cannot be triggered on the corresponding
platforms in practice.

3.2.1 Dormant Integer Overflows

A security-relevant integer overflow cannot be detected
by reasoning about the types of variables alone. Instead,
the range in which these variables operate also needs to be
considered. A larger address space allows (a) larger objects
to be created and (b) a larger number of objects to be used.
Thus, code that performs arithmetic operations on the sizes
or number of objects with variables narrower than that of
pointers become candidates for integer overflows on 64-bit
platforms.

1 unsigned int i;

2 size_t len = attacker_controlled();
3 char *buf = malloc(len);

4

5 for(i = 0; i < len; i++) {

6 *buf++ = get_next_byte();

7 }

Figure 7: Buffer overflow resulting from an integer
overflow due to larger strings on 64-bit platforms.

Figure 7 provides an example of an integer overflow result-
ing from large objects, which also does not trigger a compiler
warning. For LP64 and LLP64, the type unsigned int is nar-
rower than size_t, that is, Was(unsigned int) < Was(size_t),
M € {LP64,LLP64}. If the attacker-controlled value len is
larger than UINT_MAX (len > max Ips((i))), the loop-variable
i can never attain a value greater or equal to len as it would
first overflow and eventually result in a loop that endlessly
copies data into the buffer. Platforms using ILP32, however,
are not affected since len < max [1r,p32((i))—in other words,
the loop terminates before i overflows.

Vulnerabilities resulting from the large number of objects
are typically tied to reference counters with a type smaller

than the pointer size. We provide examples of previously un-
known vulnerabilities in the Boost C++ Libraries, Chromium
and the GNU Standard C++ from this class in Section 5.

3.2.2 Dormant Signedness Issues

In addition to truncations, signedness issues may also lie
dormant in existing code and become exploitable as the
size of the address space grows. A common occurrence of
such dormant signedness issues is the practice of assigning
the return value of strlen to a variable of type int. For
strings longer than INT_MAX, this results in a negative length.
However, on 32-bit platforms, exploiting this type of flaw is
deemed unrealistic due to the restricted amount of memory
available [20, Chp. 18 pp. 494]. On 64-bit platforms, however,
strings of this size can be easily allocated by a single process,
making it possible to trigger these dormant signedness issues.

char buffer[128];
int len = strlen(attacker_str);

if(len >= 128)
return;
memcpy (buffer, attacker_str , len);

[ N

Figure 8: Buffer overflow caused by the common
pattern of assigning the result of strlen to an int.

Figure 8 shows a corresponding vulnerability. The length
of the attacker-controlled string is determined using strlen
and is assigned to a variable of type int. If the attacker
controlled input is of length I, where max I ((len)) <1 <
max I (unsigned int), the return value stored in len is mis-
takenly interpreted as a negative number and consequently
the check in line 4 is rendered ineffective. As len is subse-
quently passed to memcpy, it is sign-extended and interpreted
as unsigned int, causing a buffer overflow in line 6.

3.2.3 Unexpected Behavior of Library Functions

Several standard C library functions have been originally
designed with 32-bit data models in mind and thus become
vulnerable to truncations, overflows or signedness issues.
Although some of these functions have been adapted to
64-bit data models, developers are often not aware of the
changed functionality.

String formatting. Functions for printing strings, such as
fprintf, snprintf and vsnprintf have been designed with
the assumption that strings cannot be longer than INT_MAX.
While this assumption is reasonable on 32-bit platforms,
it does not hold true for 64-bit data models. Let us, as
an example, consider snprintf, which writes a string to a
buffer s according to a format string fmt.

int snprintf(char *s,
size_t n, const char *fmt, ...)

The function copies at most n bytes and returns the number
of bytes that would have been written. On 64-bit platforms
the expanded format string, however, may be larger than
INT_MAX, making it impossible to return its size as an int. In
this case the C99 standard demands that snprintf returns a
fixed value of —1 [18, Sec. 7.19.6]. In practice, this can result
in vulnerabilities when programmers directly make use of the
return value to shift pointers. Figure 9 exemplarily shows
a vulnerable implementation of a log function that writes
messages to a global buffer of BUF_LEN + 1 bytes in size.



Debian stable

Average per package

Category # packages -Wconversion -Wsign-conversion -Wsign-compare -Wfloat-conversion
Required 53 576 (334) 1009 (216) 18 (2) 5 (1)
Important 56 738 (437) 976 (269) 33 (1) 10 (0)
Standard 89 913 (510) 993 (279) 28 (1) 3(1
* 198 773 (442) 993 (259) 27 (1) 5 (1)

Table 4: Number of implicit type conversions per package on 64 bit. The first value denotes all warnings
raised, the value in brackets the amount that is exclusive to 64 bit and that does not occur on 32-bit systems.

int pos = 0;
char buf [BUF_LEN +1];

int log(char *str) {
int n = snprintf(buf +pos, BUF_LEN -pos, "%s", str);

if(n > BUF_LEN -pos) {
pos = BUF_LEN;
return -1;

}

return (pos += n);

}

Figure 9: Stack-corruption vulnerability on 64-bit
systems due to unexpected behavior of snprintf.

int i;

char *buf;

FILE* const f = fopen(filename, "r");
fseek(f, 0, SEEK_END);

const long size = ftell(f);

o e I N N R

buf = malloc(size / 2 + 1);

©

10 fseek(f, 0, SEEK_SET);
11 for (; fscanf(f, "%02x", &i) != EOF; buf++)
12 *buf = i;

Figure 10: Buffer overflow for files larger than
UINT_MAX caused by unexpected return value of ftell.

The log function returns —1 once the return value of

snprintf has exceeded the overall size of the buffer (line 7-9).

Specifying an input string longer than INT_MAX, which is easily
possible on 64-bit platforms, results in snprintf returning
—1 on line 5—irrespective of the maximal number of bytes
allowed to write. This bypasses the check on line 7 and

subtracts from the index variable pos, causing it to underflow.

A subsequent call to log then corrupts the stack memory.

File processing. Similar to the printf family of functions, the
standard C library functions for processing files, such as ftell,
fseek and fgetpos, are not designed to deal with the effects
of 64-bit integer numbers, in this case, files larger than 4
Gigabyte. This problem is well known and is addressed by the
introduction of 64-bit aware counterparts, ftello, ftello64
or __ftellied. However, our empirical study shows that
ftell still is widely used instead of the better alternatives
(Section 4). Furthermore, the function ftell exhibits an
undocumented behavior when confronted with large files. It
is specified to return the current position of a file pointer as
value of type long, which is 32 bit wide on platforms using
the LLP64 data model. While the C99 standard specifies a
return value of —1 for failures [18, Sec. 7.19.3], the Microsoft
Visual C++ Runtime Library’s implementation returns 0 if
the current position exceeds LONG_MAX (Oxffffffff), which
gives rise to security problems.

Figure 10 shows an exemplary vulnerability in a piece
of code that reads a file of hexadecimal values encoded in
textual form (e.g., 303132...) and stores it as decoded bytes
in a buffer buf. To this end, the code first determines the
file’s size by seeking to its end and obtaining the file position
using ftell (line 4-6). Finally, the byte values are written
to the buffer by iteratively calling fscanf until EOF is reached
(lines 10-12). On Microsoft Windows 64-bit a vulnerability
can be triggered using files larger than 4 Gigabytes, as the
call to ftell returns zero and only one byte is allocated for
the buffer (line 8). In effect, the copy loop corrupts the heap
by writing the complete file to memory not allocated by the
process.

4. EMPIRICAL STUDY

We proceed to analyze how wide-spread 64-bit migration
issues are in today’s software. To this end, we conduct two
empirical experiments. First, we assess the prevalence of
problematic type conversions in general, considering all im-
plicit conversions that may alter a value during assignments
or in expressions (Section 4.1). Second, based on the obser-
vations made in the previous section we refine our search
and automatically look for programming patterns that are
characteristic for 64-bit migration flaws (Section 4.2).

4.1 Implicit Type Conversions

In this experiment we study how often type conversions
potentially go wrong. To this end, we inspect all 198 source
packages from Debian stable (“Jessie”, release 8.2) tagged
as either Required, Important or Standard and are written
in the C/C++ programming languages. We compile each
package on Debian 32-bit and Debian 64-bit and inspect all
warnings raised.

On request, GCC, LLVM’s clang, and other compilers
emit warnings when an assignment, arithmetic operation or
a comparison is applied to operands of incompatible integer
types and an implicit conversion is required. Frequently,
these compiler flags are however not used due to the sheer
amount of warnings potentially raised in practice [25]. As a
matter of fact, we find that none of the 198 Debian packages
uses one of these flags. For our study we hence explicitly
add: -Wconversion for width conversion, -Wsign-conversion
for changes in signedness, -Wsign-compare for comparisons
of signed and unsigned types and -Wfloat-conversion for
conversion that involve a loss in floating point precision [11].

Table 4 summarizes the results. We list the total count
of warnings of each conversion type raised by the compiler
on the 64-bit system per package and especially highlight
warnings that have emerged from the migration process. We
find that the vast majority of warnings are width and sign
conversions with 442 and 259 warnings per package, respec-



source type unsigned signed Total
destination type size_t wunsigned long uintptr_t ssize_t long intptr_t ptrdiff_t *
int 10,181 4,188 0 3,294 12,114 24 6 29,807
unsigned int 10,989 2,857 0 91 1,339 0 0 15,276
int32_t 55 42 0 0 32 0 0 129
uint32_t 302 231 0 0 120 0 0 653
Total 21,527 7,318 0 3,385 13,605 24 6 45,865

Table 5: Number of width conversions in Debian stable, critical to the migration of code from ILP32 to LP64.

Code-base P1: atol P2: memcpy P3: loops P4: strlen P5a: snprintf PB5b: ftell
Debian Jessie  21.49% (133) 7.76% (2,536) 8.47% (1,264) 13.85% (7,595) 27.55% (762) 64.74% (628)
GitHub 18.66% (25) 15.19% (2,918) 12.56% (658) 22.54% (3,572) 34.79% (502) 85.05% (182)
Awverage 20.98% (158) 10.51% (5,454) 9.53% (1,922) 15.80% (11,167) 30.03% (1,264) 68.41% (810)
Table 6: Number of specific patterns for 64-bit migration issues in source packages of Debian stable

(“Jessie”, release 8.2) and 200 popular C/C++ projects hosted on GitHub, relative to their absolute usage.

tively. These warnings are exclusive to 64 bit and do not
occur on 32-bit platforms. By contrast, sign comparisons
only slightly increase due to the 64-bit migration. However,
in line with the examples given in Section 3.1.2 migration
vulnerabilities often occur on 64-bit platforms due to com-
parisons that remain signed rather than being implicitly
converted to unsigned. Hence, the amount of warnings per
package resolved in comparison to a 32-bit platform has to
be taken into account as well, such that in total 15% of the
warnings can be considered critical.

Finally, we look at implicit type conversion caused by the
migration process from 32-bit to 64-bit platforms in more de-
tail. Table 5 shows the absolute number of warnings for basic
types that are 4 bytes wide for Debian 32 bit (ILP32), but
are 8 bytes wide one Debian 64 bit (LP64), hence represent-
ing reasonable suspects for 64-bit migration vulnerabilities.
In total we record more than 45,000 warnings of this kind,
suggesting a huge potential for misuse. Especially, the con-
version from size_t to int and vice versa appears to be
problematic in practice, spawning over 21,000 warnings in
core packages of Debian stable.

4.2 Patterns of 64-bit Migration Issues

Of course, not all implicit type conversions indicate a bug
or even a vulnerability. We hence narrow down this vast
amount of suspect locations by specifically looking for code
patterns that may cause unintended operations on 64-bit
platforms. To this end, we make use of techniques from
control-flow and data-flow analysis to model specific patterns
of 64-bit migration issues. In particular, we characterize
patterns from the 5 categories presented in Section 3 on
the basis of practical examples and count the occurrences
of these in two code bases: we again consider the packages
from Debian stable described in the previous section and
additionally examine the 200 (at the time of writing) most
popular C/C++ projects on GitHub.

P1. New truncations. As an example for a truncation that
exclusively happens on 64-bit systems we consider the
faulty use of the standard library function atol. We
count all occurrences of atol and relate these to those
invocations that assign the return value to a variable
of type int rather than long. In Section 5.1 we discuss
a real-world vulnerability based on such a truncation.

P2. New signedness issues. When used in the context of
memory operations, signedness issues may cause severe
security flaws. For this class, we focus on unexpected
sign-extensions in combination with the memory copy
operation memcpy as discussed in Section 3.1.2. We count
all invocations of memcpy that use a signed variable of
type int to specify the amount of data to copy and
compare these to the overall number of calls to memcpy.

P3. Dormant integer overflows. Integers may under or over-
flow in various situations. For this pattern we choose a
rather strict scenario, in which a loop is iterating over
code based on 64-bit related data. In particular, we
count for loops that use a loop-variable of type size_t
and relate these to the subset of loop that additionally
increment or decrement a variable of type (unsigned)
int in their loop body.

P4. Dormant signedness issues. For this class, we take up
the example of the incorrect usage of the strlen func-
tion presented earlier. To this end, we count the calls
to strlen that do not use a string literal as parameter
and put these in relation to occurrences that assign the
return value of strlen to (unsigned) int. Left values of
other types are not considered as problematic in this
example and count for the reference quantity.

P5. Unezpected behavior of library functions. Finally, we
inspect two examples of library functions that behave
differently than a) developers might expect or b) the
C99 standard specification. First, we count occurrences
of snprintf that make use of their return value and
put these in relation to occurrences that use the return
value but do not check its validity. Second, we count the
calls to ftell in relation to the absolute usage of ftellx
functions (ftell, ftello, ftell64 and _ftelli64).

The presented patterns do not provide a complete list of
64-bit migration flaws, but should convey a feeling for the
prevalence of such flaws by example. Surprisingly, these
trivial patterns already point out a large number of potential
issues. Table 6 summarizes our findings. 21% of all calls to
function atol are assigned to a variable of type int instead
of long, causing a truncation on 64-bit systems (P1). Also,
developers frequently pass signed integers of type int to



function parameters defined as size_t. In case of the memcpy
function and its parameter for specifying the number of bytes
to copy, roughly 10% of the calls are used incorrectly, allowing
for the malicious use of implicit sign-extensions (P2). Our
pattern modeling integer overflows induced by simple for
loops reveals that 9.5% increment an int variable although
the loop-counter is specified as size_t (P3). 15% of all calls
to strlen are falsely assigned to a variable of type int rather
than size_t (P4). Finally, the snprintf and ftell functions
are incorrectly used in 30% and 70% of all cases, respectively
(P5a & P5b).

In summary we observe that projects included in Debian
appear to exhibit less such patterns for 64-bit migration
flaws than the projects retrieved from GitHub—the absolute
number however suggests a significant potential for misuse.

S. CASE STUDIES

Finally, we discuss 64-bit migration vulnerabilities from
all categories described in Section 3 in practice. We build
general patterns for the control-flow and data-flow of such
issues, look for these in popular code bases to identify poten-
tially vulnerable program code and manually inspect these.
This effort has resulted in 6 previously unknown vulnerabili-
ties' in high-quality software such as Chromium, the Linuz
kernel and zlib. Additionally, we complement our study with
two vulnerabilities disclosed in the past.

In this context, we highlight the two main sources of 64-bit
migration flaws: 1) changes in integer widths, and 2) the
increased amount of memory available on 64-bit systems.
Table 7 summarizes our findings with respect to these two
categories.

Case Study Width Change Mem
PHP CVE-2007-1884 X

libarchive CVE-2013-0211 X

zlib new X X
libarchive new X
Chromium new X
GNU C Library new X
Linux Kernel new X
Boost C++ Libraries new X

Table 7: Vulnerabilities discussed in this section.

5.1 New Truncations

To begin with, we briefly describe two vulnerabilities re-
lated to new truncations caused by the migration from 32 bit
to 64-bit systems. In particular, we examine a vulnerability
from 2007 in PHP as well as a vulnerability in the Linux
Kernel discovered as part of our research.

PHP. Esser [10] describes a vulnerability that allows code
execution in versions of PHP earlier than 4.4.5 and 5.2.1
(CVE-2007-1884). The vulnerability results from an inte-
ger truncation not present on 32-bit systems. While PHP’s
php_sprintf_getnumber function, a function used by all printf
variants for parsing format strings, returns integers of type
long, its result is stored in variables of type int when pro-
cessing argument numbers, width and precision. On systems
using ILP32 and even LLP64 (Windows) this is not an issue

LAll discovered vulnerabilities have responsibly been dis-
closed to the vendors of the affected software projects.

as both types are of the same width. However, for LP64,
long is eight bytes wide, introducing a truncation that can
be exploited for arbitrary code execution by specifying a
precision of INT_MAX characters.

Linux kernel. The Linux kernel comes with its own imple-
mentation of C standard library functions, e.g., for string
manipulation. In contrast to corresponding implementations
in the GNU C Library, the implementation of the Linux
Kernel version 4.6 and before does not check for overly large
inputs passed to the snprintf function. In particular, the
function subtracts one pointer from another, yielding a value
of type ptrdiff_t, but returns it as 32 bit wide integer. On
64-bit systems ptrdiff_t is 64 bit wide such that the return
value is truncated for large inputs. This matches the example
given in Section 3.1.1 exactly.

5.2 New Signedness Issues

To demonstrate the practicability of signedness issues on
64-bit systems, we again inspect a vulnerability discovered
by us in zlib and one in libarchive reported in 2013. The first
involves a sign-extension and the second, a sign-comparison
issue as described in Section 3.1.2.

Sign-extension issue in zlib. This vulnerability resides in
version 1.2.8 of z2lib and is triggered by the gzprintf function,
which is used to write a formatted string into a buffer, with a
size previously specified using the library function gzbuffer.
Unfortunately, the function is not fit to process inputs larger
than INT_MAX bytes. While at initialization the target size is
specified as unsigned int, the gzvprintf function internally
casts this value to int. Later on this value is used as second
parameter to the vsnprintf function which is defined as
size_t and specifies the number of bytes to write into the
buffer at most. On LP64 and LLP64, size_t is twice as wide as
int such that a sign extension is performed and the conversion
yields a large unsigned value, allowing to overflow the buffer.

Sign-comparison issue in libarchive. Yamaguchi [39] discov-
ered a vulnerability in the archive_write_zip_data function
of libarchive version 3.1.2 and below (CVE-2013-0211). This
function is used as a callback for writing zip archives and
receives the destination buffer and its size as arguments. Be-
fore data is written, the implementation checks, whether the
specified buffer exceeds the maximum number of bytes that
may be written to the zip archive. In this context, the size is
explicitly casted from size_t to int64_t, a conversion that has
been unproblematic on 32 bit systems (INT64_MAX > SIZE_MAX)
but changes signs on 64 bit platforms as size_t and int64_t
are of the same width. Later on, the UINT_MAX bytes of the
provided input are deflated to the output archive, irrespective
of the maximally allowed number of bytes.

5.3 Dormant Integer Overflows

We proceed to give examples for integer overflows that
already exist on 32-bit data models, but can only be trig-
gered on 64-bit platforms due to the increased size of the
address space. We have discovered vulnerabilities of this
kind in a function of the GNU C' Library, the shared pointer
implementations of the Boost C++ Libraries, Chromium,
and the GNU Standard C++ Library.

GNU C Library. The weswidth function as specified by the
“X/Open Portability Guide” [17] and implemented by version



2.23 of the GNU C' Library contains an integer overflow. This
function counts the number of columns needed to represent
a wide-character string. This counter, however, is internally
defined as a variable of type int, in accordance with the
functions return value. As the input string might be larger
than INT_MAX on 64-bit systems, processing the complete
string overflows the counter. With a string longer than
UINT_MAX the return value wraps around to a positive number
again, such that using this value for memory allocations
inevitable results in a buffer overflow.

C++ shared pointers. Shared pointers are containers for
raw pointers that keep track of the ownership of these and
manage the number of references. If all references are de-
stroyed, the last instance takes care of also destroying the
hosted raw pointer. Unfortunately, the implementations as
distributed with version 1.60 of the Boost C++ Libraries
(boost: :shared_ptr<T>) as well as those of Chromium version
52.0 and the GNU Standard C++ Libraries that come with
GCC version 6.1.0 suffer from a flaw: The reference counter
is implemented as an integer of type int. Consequently, on
64-bit systems, an attacker may create lots of shared pointers
such that the internal counter overflows until it contains a
value of 1 again. The next shared pointer that is subsequently
destroyed then also destroys the shared raw pointer, leaving
UINT_MAX instances behind pointing to a freed location. This
results in a use-after-free vulnerability that can be exploited
by attackers for arbitrary code execution.

5.4 Dormant Signedness Issues

Finally we examine a vulnerability we discovered in libarchive
version 3.2.0, which contains a signedness issues that, on a
32-bit system, could not be triggered as of the limited address
space, but are exploitable on 64 bit.

This vulnerability in the processing of is09660 containers
rests on checks for the maximally allowed length of Joliet
identifiers. In the course of these checks, the length of the
name which is stored as size_t is explicitly casted to int,
very much like the example given in Section 3.2.2. It is hence
possible to provide a string just long enough to change the
signedness of the integer to bypass this check. Allocating
as much memory, however, has only become possible with
64-bit systems. libarchive maintains UTF-16 and multi-byte
versions of the names and therefore, allocates at least 3x
more memory as theoretically needed for merely bypassing
the check.

6. DISCUSSION

Ideally, flaws induced by the migration from 32-bit to 64-
bit platforms are addressed by thorough code audits that
specifically focus on problematic type conversions and related
code patterns. However, more than 10 years after 64-bit pro-
cessors have reached the mass market, we have shown that
vulnerabilities resulting from the migration process still are
a major issue. We thus discuss strategies to cope with this
lasting issue in software security. We differentiate counter-
measures based on the two root causes of 64-bit migration
vulnerabilities: 1) the vast amount of memory addressable
by a single process and 2) the change in width of integral
integer types and resulting conversion problems.

Memory monitoring. As discussed in Section 3.2, 64-bit mi-
gration flaws are often triggered by large amounts of memory

allocated by a single process. Consequently, such vulnera-
bilities can be coped with by tightly monitoring the usage
of memory. Bernstein, for instance, even argues that the
vulnerabilities in qmail discovered by Guninski [13] are not
relevant at all because “nobody gives gigabytes of memory to
each gmail-smipd process, so there is no problem with gmail’s
assumption that allocated array lengths fit comfortably into
32 bits” [3]. While this does not hide the fact that qmail is
vulnerable in this particular scenario, there is some truth
to pointing out alternatives to limit a process’ usage of re-
sources such as softlimit from daemontools [4], ulimit [23]
or cgroup [14].

These mechanisms are rather strict with respect to enforc-
ing limitations and refuse to provide more memory or even
kill the process (SIGKILL) if hard limits are reached. The use
of memory warnings, that are raised at runtime whenever
a process uses more than the granted amount of memory
might be an alternative option: Instead of refusing any more
memory or terminating the process, a signal (e.g., SIGUSR1)
is sent to the process, which then decides whether or not this
usage is legitimate or not. This follows the basic rationale
that, although a process in principle might consume large
amounts of memory (e.g., audio/video editing, image pro-
cessing, scientific computing), its legitimacy depends on the
task at hand and thus, is best judged by the process itself.
However, it is questionable whether a process under attack
still is trustworthy enough to make this decision.

Improved error reporting. As demonstrated in Section 4.1
even well-reviewed code from mature projects contains a
multitude of type-conversion warnings. C/C++ projects
from Debian stable tagged as Required, Important or Standard
spawn 1,798 warnings related to different kinds of conversions
on average, 703 of which are exclusive to the migration to 64-
bit platforms. Whether or not these express actual flaws or
even security issues is unclear. It, however, appears that those
that actually are security flaws, get lost in the sheer amount
of warnings. Presumably for this exact reason, none of the
inspected Debian packages makes use of the -Wconversion
flag and in doing so, turns a blind eye on these issues.

Factoring out the functionality of GCC’s -Wconversion flag
that concerns data types that have changed in size due to
migration to 64-bit platforms to a separate flag as deployed in
IBM’s XL compiler [16], for instance, is a valuable first step.
Such an additional flag can then be issued individually or
automatically set on specifying -Wconversion to preserve the
current functionality of the compiler. Although, this already
reduces the amount of warnings by 60%, the absolute number
of warnings in complex software projects might still be too
large to be handled at once.

Making use of data that arise from program analysis al-
ready employed by compilers, can be used to restrict warnings
to more specific situations, as for instance, the lack of some
sort of check on values for which a conversion warning is
issued. In case of the examined Debian packages this would
reduce the number of warnings by additional 95% to merely
30 instances. However, such analyses come at a computa-
tional cost that often does not fit the requirements of a
performance-oriented compiler framework.

In conclusion the most effective strategy against 64-bit mi-
gration issues, and vulnerabilities arising thereof, is to raise
awareness for this particular aspect of software security and
avoid implicit conversion in the first place.



7. RELATED WORK

The discovery and prevention of integer-related vulner-
abilities is a long-standing topic in computer security. In
this section, we provide an overview of past research on
integer-related vulnerabilities, including previous work on
vulnerabilities related to 64-bit platforms, and more ad-hoc
guides for safely porting code to 64-bit platforms published
outside of academia.

Integer-related vulnerabilities. Many researchers have dealt
with integer-related defects and vulnerabilities in the past,
where efforts have been made to both identify and prevent
these flaws. On the one hand, methods that operate on
source code or intermediate program representations have
been proposed, both based purely on static analysis [2, 24, 43],
and dynamic approaches that rely on checks at runtime [6,
8, 9, 34, 35, 38, 44]. On the other hand, methods to identify
these flaws in binary executables have been presented, again,
both via static analysis [12, 42, 45], and in combination with
dynamic approaches [7, 30, 36].

Another strain of research aims to address the root causes
of integer-related vulnerabilities by designing libraries for
safe integer operations, e.g., Safelnt [22] and IntSafe [15].
Moreover, dialects of the C programming language that
provide additional annotations or introduce new concepts
to prevent security flaws have been proposed [19, 31, 32].
While these approaches cover many different integer-related
flaws, only few provide a general view on the prevalence of
such flaws [e.g., 6, 9, 34, 43] and none so far, specifically
address integer flaws that arise from the migration to 64-bit
platforms—a gap we attempt to close with this work.

64-bit migration guides. Several informal guides for porting
software to 64-bit architectures are available to date. Several
of these focus entirely on correct pointer to integer conver-
sions, the most obvious problem introduced by the new data
model [37]. Moreover, large software vendors such as IBM,
Oracle (Sun), and Apple have released guides for porting
of code from ILP32 to LP64 that discuss generic problems,
including effects on type conversions, on memory layout (e.g.,
the alignment of data types) and on missing function proto-
types [1, 26, 33]. However, none of these guides provide a
discussion of the security implications these problems have as
well as discusses how exploitable vulnerabilities can emerge
from the migration to 64-bit systems.

Tools for identifying 64-bit vulnerabilities. Tools to identify
some vulnerabilities related to 64-bit systems have been devel-
oped. In particular, the Viva64 static analyzer (part of PVS-
Studio) employs a set of rules for the discovery of certain 64-
bit vulnerabilities [41]. Moreover, Medeiros and Correia [28]
propose a tool to detect 64-bit migration vulnerabilities.
Their method is based on a combination of type checking
and taint tracking to pinpoint integer manipulation issues
involving tainted data. The authors report that all findings
in their empirical evaluation are false positives, though.

8. CONCLUSIONS

Migrating software to different platforms is a notable chal-
lenge for software security. Due to the use of different data
models, assumptions about widths of integer types made for
one platform do not necessarily hold true for another. In this
paper, we systematically categorize and define vulnerabilities

made possible by the migration process to 64-bit platforms.
We show that more than 10 years after 64-bit architectures
have reached the mass market, implicit conversion of types
that have changed due to the different data models still
are prevalent in mature and well-tested software. We find
that on average, C/C++ projects from Debian stable tagged
as Required, Important or Standard spawn 1,798 warnings
concerning type conversions, 703 of which are exclusive to
64-bit systems. For example, to a large extend developers
appear to unjustifiably treat the unsigned type size_t and
(unsigned) int as equal, leading to 21,527 warnings in total,
which creates a large potential for security flaws. Moreover,
we look out for particular patterns of 64-bit migration flaws
to refine our findings on implicit type conversions. For in-
stance, 10% of all invocations to the memcpy function in the
inspected Debian and GitHub projects, are called with a
signed value of 32-bit in size rather than the 64 bit wide
size_t as parameter for the number of bytes to copy.

Finally, we make use of this systematization and the expe-
rience thus gained to uncover 6 previously unknown vulnera-
bilities in popular software projects, such as the Linux kernel,
Chromium, the Boost C++ Libraries and the compression
libraries libarchive and zlib—all of which have emerged from
the migration from 32-bit to 64-bit platforms.
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